Skip to contents

Estimates the L function

Usage

Lhat(X, r = NULL, ReferenceType = "", NeighborType = "", CheckArguments = TRUE)

Arguments

X

A weighted, marked, planar point pattern (wmppp.object).

r

A vector of distances. If NULL, a sensible default value is chosen (512 intervals, from 0 to half the diameter of the window) following spatstat.

ReferenceType

One of the point types. Default is all point types.

NeighborType

One of the point types. Default is all point types.

CheckArguments

Logical; if TRUE, the function arguments are verified. Should be set to FALSE to save time in simulations for example, when the arguments have been checked elsewhere.

Details

L is the normalized version of K: \(L(r)=\sqrt{\frac{K}{\pi}}-r\).

Value

An object of class fv, see fv.object, which can be plotted directly using plot.fv.

References

Besag, J. E. (1977). Comments on Ripley's paper. Journal of the Royal Statistical Society B 39(2): 193-195.

Note

L was originally defined as \(L(r)=\sqrt{\frac{K}{\pi}}\). It has been used as \(L(r)=\sqrt{\frac{K}{\pi}}-r\) in a part of the literature because this normalization is easier to plot.

See also

Examples

data(paracou16)
autoplot(paracou16)


# Calculate L
r <- 0:30
(Paracou <- Lhat(paracou16, r))
#> Function value object (class ‘fv’)
#> for the function r -> L(r)
#> ................................................................
#>      Math.label     Description                                 
#> r    r              distance argument r                         
#> theo L[pois](r)     theoretical Poisson L(r)                    
#> iso  hat(L)[iso](r) Ripley isotropic correction estimate of L(r)
#> ................................................................
#> Default plot formula:  .~r
#> where “.” stands for ‘iso’, ‘theo’
#> Recommended range of argument r: [0, 30]
#> Available range of argument r: [0, 30]
#> Unit of length: 1 meter

# Plot
autoplot(Paracou)