Estimation of the L function
Lhat.Rd
Estimates the L function
Arguments
- X
A weighted, marked, planar point pattern (
wmppp.object
).- r
A vector of distances. If
NULL
, a sensible default value is chosen (512 intervals, from 0 to half the diameter of the window) following spatstat.- ReferenceType
One of the point types. Default is all point types.
- NeighborType
One of the point types. Default is all point types.
- CheckArguments
Logical; if
TRUE
, the function arguments are verified. Should be set toFALSE
to save time in simulations for example, when the arguments have been checked elsewhere.
References
Besag, J. E. (1977). Comments on Ripley's paper. Journal of the Royal Statistical Society B 39(2): 193-195.
Note
L was originally defined as \(L(r)=\sqrt{\frac{K}{\pi}}\). It has been used as \(L(r)=\sqrt{\frac{K}{\pi}}-r\) in a part of the literature because this normalization is easier to plot.
Examples
data(paracou16)
autoplot(paracou16)
# Calculate L
r <- 0:30
(Paracou <- Lhat(paracou16, r))
#> Function value object (class ‘fv’)
#> for the function r -> L(r)
#> ................................................................
#> Math.label Description
#> r r distance argument r
#> theo L[pois](r) theoretical Poisson L(r)
#> iso hat(L)[iso](r) Ripley isotropic correction estimate of L(r)
#> ................................................................
#> Default plot formula: .~r
#> where “.” stands for ‘iso’, ‘theo’
#> Recommended range of argument r: [0, 30]
#> Available range of argument r: [0, 30]
#> Unit of length: 1 meter
# Plot
autoplot(Paracou)