Estimate the quadratic entropy (Rao 1982) of species from abundance or probability data. An estimator (Lande 1996) is available to deal with incomplete sampling.
Usage
ent_rao(x, ...)
# S3 method for class 'numeric'
ent_rao(
  x,
  distances = NULL,
  tree = NULL,
  normalize = TRUE,
  estimator = c("Lande", "naive"),
  as_numeric = FALSE,
  ...,
  check_arguments = TRUE
)
# S3 method for class 'species_distribution'
ent_rao(
  x,
  distances = NULL,
  tree = NULL,
  normalize = TRUE,
  estimator = c("Lande", "naive"),
  gamma = FALSE,
  as_numeric = FALSE,
  ...,
  check_arguments = TRUE
)Arguments
- x
 An object, that may be a named numeric vector (names are species names) containing abundances or probabilities, or an object of class abundances or probabilities.
- ...
 Unused.
- distances
 a distance matrix or an object of class stats::dist.
- tree
 an ultrametric, phylogenetic tree. May be an object of class phylo_divent, ape::phylo, ade4::phylog or stats::hclust.
- normalize
 if
TRUE, phylogenetic is normalized: the height of the tree is set to 1.- estimator
 An estimator of entropy.
- as_numeric
 if
TRUE, a number or a numeric vector is returned rather than a tibble.- check_arguments
 if
TRUE, the function arguments are verified. Should be set toFALSEto save time when the arguments have been checked elsewhere.- gamma
 if
TRUE, \(\gamma\) diversity, i.e. diversity of the metacommunity, is computed.
Details
Rao's entropy is phylogenetic or similarity-based entropy of order 2.
ent_phylo and ent_similarity with argument q = 2 provide more estimators
and allow estimating entropy at a chosen level.
All species of the species_distribution must be found in the matrix of
distances if it is named.
If it is not or if x is numeric, its size must equal the number of species.
Then, the order of species is assumed to be the same as that of the
species_distribution or its numeric equivalent.
References
Lande R (1996).
“Statistics and Partitioning of Species Diversity, and Similarity among Multiple Communities.”
Oikos, 76(1), 5–13.
doi:10.2307/3545743
.
 Rao CR (1982).
“Diversity and Dissimilarity Coefficients: A Unified Approach.”
Theoretical Population Biology, 21, 24–43.
doi:10.1016/0040-5809(82)90004-1
.
Examples
# Entropy of each community
ent_rao(paracou_6_abd, tree = paracou_6_taxo)
#> # A tibble: 4 × 5
#>   site      weight estimator order entropy
#>   <chr>      <dbl> <chr>     <dbl>   <dbl>
#> 1 subplot_1   1.56 Lande         2   0.970
#> 2 subplot_2   1.56 Lande         2   0.977
#> 3 subplot_3   1.56 Lande         2   0.973
#> 4 subplot_4   1.56 Lande         2   0.973
# Similar to (but estimators are not the same)
ent_phylo(paracou_6_abd, tree = paracou_6_taxo, q = 2)
#> # A tibble: 4 × 5
#>   site      weight estimator     q entropy
#>   <chr>      <dbl> <chr>     <dbl>   <dbl>
#> 1 subplot_1   1.56 UnveilJ       2   0.943
#> 2 subplot_2   1.56 UnveilJ       2   0.953
#> 3 subplot_3   1.56 UnveilJ       2   0.951
#> 4 subplot_4   1.56 UnveilJ       2   0.939
# Functional entropy
ent_rao(paracou_6_abd, distances = paracou_6_fundist)
#> # A tibble: 4 × 5
#>   site      weight estimator order entropy
#>   <chr>      <dbl> <chr>     <dbl>   <dbl>
#> 1 subplot_1   1.56 Lande         2   0.365
#> 2 subplot_2   1.56 Lande         2   0.393
#> 3 subplot_3   1.56 Lande         2   0.383
#> 4 subplot_4   1.56 Lande         2   0.365
# gamma entropy
ent_rao(paracou_6_abd, tree = paracou_6_taxo, gamma = TRUE)
#> # A tibble: 1 × 4
#>   site          estimator order entropy
#>   <chr>         <chr>     <dbl>   <dbl>
#> 1 Metacommunity Lande         2   0.976
