Estimate the Hurlbert entropy (Hurlbert 1971) of species from abundance or probability data. Several estimators are available to deal with incomplete sampling.
Usage
ent_hurlbert(x, k = 2, ...)
# S3 method for class 'numeric'
ent_hurlbert(
  x,
  k = 2,
  estimator = c("Hurlbert", "naive"),
  as_numeric = FALSE,
  ...,
  check_arguments = TRUE
)
# S3 method for class 'species_distribution'
ent_hurlbert(
  x,
  k = 2,
  estimator = c("Hurlbert", "naive"),
  as_numeric = FALSE,
  ...,
  check_arguments = TRUE
)Arguments
- x
 An object, that may be a numeric vector containing abundances or probabilities, or an object of class abundances or probabilities.
- k
 the order of Hurlbert's diversity.
- ...
 Unused.
- estimator
 An estimator of entropy.
- as_numeric
 if
TRUE, a number or a numeric vector is returned rather than a tibble.- check_arguments
 if
TRUE, the function arguments are verified. Should be set toFALSEto save time when the arguments have been checked elsewhere.
Details
Bias correction requires the number of individuals. See div_hurlbert for estimators.
Hurlbert's entropy cannot be estimated at a specified level of interpolation or extrapolation, and entropy partitioning is not available.
References
Hurlbert SH (1971). “The Nonconcept of Species Diversity: A Critique and Alternative Parameters.” Ecology, 52(4), 577–586. doi:10.2307/1934145 .
Examples
# Entropy of each community
ent_hurlbert(paracou_6_abd, k = 2)
#> # A tibble: 4 × 5
#>   site      weight estimator order entropy
#>   <chr>      <dbl> <chr>     <dbl>   <dbl>
#> 1 subplot_1   1.56 Hurlbert      2    1.98
#> 2 subplot_2   1.56 Hurlbert      2    1.98
#> 3 subplot_3   1.56 Hurlbert      2    1.98
#> 4 subplot_4   1.56 Hurlbert      2    1.97
