Estimate the Hurlbert entropy Hurlbert1971divent of species from abundance or probability data. Several estimators are available to deal with incomplete sampling.

ent_hurlbert(x, k = 2, ...)

# S3 method for class 'numeric'
ent_hurlbert(
  x,
  k = 2,
  estimator = c("Hurlbert", "naive"),
  as_numeric = FALSE,
  ...,
  check_arguments = TRUE
)

# S3 method for class 'species_distribution'
ent_hurlbert(
  x,
  k = 2,
  estimator = c("Hurlbert", "naive"),
  ...,
  check_arguments = TRUE
)

Arguments

x

An object, that may be a numeric vector containing abundances or probabilities, or an object of class abundances or probabilities.

k

The order of Hurlbert's diversity.

...

Unused.

estimator

An estimator of entropy.

as_numeric

If TRUE, a number or a numeric vector is returned rather than a tibble.

check_arguments

If TRUE, the function arguments are verified. Should be set to FALSE to save time when the arguments have been checked elsewhere.

Value

A tibble with the site names, the estimators used and the estimated entropy.

Details

Bias correction requires the number of individuals. See div_hurlbert for estimators.

Hurlbert's entropy cannot be estimated at a specified level of interpolation or extrapolation, and entropy partitioning is not available.

References

Examples

# Entropy of each community
ent_hurlbert(paracou_6_abd, k = 2)
#> # A tibble: 4 × 5
#>   site      weight estimator order entropy
#>   <chr>      <dbl> <chr>     <dbl>   <dbl>
#> 1 subplot_1   1.56 Hurlbert      2    1.98
#> 2 subplot_2   1.56 Hurlbert      2    1.98
#> 3 subplot_3   1.56 Hurlbert      2    1.98
#> 4 subplot_4   1.56 Hurlbert      2    1.97