Estimate the Hurlbert entropy Hurlbert1971divent of species from abundance or probability data. Several estimators are available to deal with incomplete sampling.
ent_hurlbert(x, k = 2, ...)
# S3 method for class 'numeric'
ent_hurlbert(
x,
k = 2,
estimator = c("Hurlbert", "naive"),
as_numeric = FALSE,
...,
check_arguments = TRUE
)
# S3 method for class 'species_distribution'
ent_hurlbert(
x,
k = 2,
estimator = c("Hurlbert", "naive"),
...,
check_arguments = TRUE
)
An object, that may be a numeric vector containing abundances or probabilities, or an object of class abundances or probabilities.
The order of Hurlbert's diversity.
Unused.
An estimator of entropy.
If TRUE
, a number or a numeric vector is returned rather than a tibble.
If TRUE
, the function arguments are verified.
Should be set to FALSE
to save time when the arguments have been checked elsewhere.
A tibble with the site names, the estimators used and the estimated entropy.
Bias correction requires the number of individuals. See div_hurlbert for estimators.
Hurlbert's entropy cannot be estimated at a specified level of interpolation or extrapolation, and entropy partitioning is not available.
# Entropy of each community
ent_hurlbert(paracou_6_abd, k = 2)
#> # A tibble: 4 × 5
#> site weight estimator order entropy
#> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 subplot_1 1.56 Hurlbert 2 1.98
#> 2 subplot_2 1.56 Hurlbert 2 1.98
#> 3 subplot_3 1.56 Hurlbert 2 1.98
#> 4 subplot_4 1.56 Hurlbert 2 1.97