Estimate the Hurlbert entropy (Hurlbert 1971) of species from abundance or probability data. Several estimators are available to deal with incomplete sampling.
Usage
ent_hurlbert(x, k = 2, ...)
# S3 method for class 'numeric'
ent_hurlbert(
x,
k = 2,
estimator = c("Hurlbert", "naive"),
as_numeric = FALSE,
...,
check_arguments = TRUE
)
# S3 method for class 'species_distribution'
ent_hurlbert(
x,
k = 2,
estimator = c("Hurlbert", "naive"),
as_numeric = FALSE,
...,
check_arguments = TRUE
)
Arguments
- x
An object, that may be a numeric vector containing abundances or probabilities, or an object of class abundances or probabilities.
- k
the order of Hurlbert's diversity.
- ...
Unused.
- estimator
An estimator of entropy.
- as_numeric
if
TRUE
, a number or a numeric vector is returned rather than a tibble.- check_arguments
if
TRUE
, the function arguments are verified. Should be set toFALSE
to save time when the arguments have been checked elsewhere.
Details
Bias correction requires the number of individuals. See div_hurlbert for estimators.
Hurlbert's entropy cannot be estimated at a specified level of interpolation or extrapolation, and entropy partitioning is not available.
References
Hurlbert SH (1971). “The Nonconcept of Species Diversity: A Critique and Alternative Parameters.” Ecology, 52(4), 577–586. doi:10.2307/1934145 .
Examples
# Entropy of each community
ent_hurlbert(paracou_6_abd, k = 2)
#> # A tibble: 4 × 5
#> site weight estimator order entropy
#> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 subplot_1 1.56 Hurlbert 2 1.98
#> 2 subplot_2 1.56 Hurlbert 2 1.98
#> 3 subplot_3 1.56 Hurlbert 2 1.98
#> 4 subplot_4 1.56 Hurlbert 2 1.97