Estimate the diversity sensu stricto, i.e. the effective number of species Dauby and Hardy (2012) from abundance or probability data.
Usage
div_hurlbert(x, k = 1, ...)
# S3 method for class 'numeric'
div_hurlbert(
x,
k = 2,
estimator = c("Hurlbert", "naive"),
as_numeric = FALSE,
...,
check_arguments = TRUE
)
# S3 method for class 'species_distribution'
div_hurlbert(
x,
k = 2,
estimator = c("Hurlbert", "naive"),
as_numeric = FALSE,
...,
check_arguments = TRUE
)
Arguments
- x
An object, that may be a numeric vector containing abundances or probabilities, or an object of class abundances or probabilities.
- k
the order of Hurlbert's diversity.
- ...
Unused.
- estimator
An estimator of asymptotic diversity.
- as_numeric
if
TRUE
, a number or a numeric vector is returned rather than a tibble.- check_arguments
if
TRUE
, the function arguments are verified. Should be set toFALSE
to save time when the arguments have been checked elsewhere.
Details
Several estimators are available to deal with incomplete sampling.
Bias correction requires the number of individuals.
Estimation techniques are from Hurlbert (1971) .
Hurlbert's diversity cannot be estimated at a specified level of interpolation or extrapolation, and diversity partioning is not available.
References
Dauby G, Hardy OJ (2012).
“Sampled-Based Estimation of Diversity Sensu Stricto by Transforming Hurlbert Diversities into Effective Number of Species.”
Ecography, 35(7), 661–672.
doi:10.1111/j.1600-0587.2011.06860.x
.
Hurlbert SH (1971).
“The Nonconcept of Species Diversity: A Critique and Alternative Parameters.”
Ecology, 52(4), 577–586.
doi:10.2307/1934145
.
Examples
# Diversity of each community
div_hurlbert(paracou_6_abd, k = 2)
#> # A tibble: 4 × 5
#> site weight estimator order diversity
#> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 subplot_1 1.56 Hurlbert 2 42.3
#> 2 subplot_2 1.56 Hurlbert 2 44.6
#> 3 subplot_3 1.56 Hurlbert 2 48.9
#> 4 subplot_4 1.56 Hurlbert 2 36.0