Estimate the Generalized Simpson's entropy of species from abundance or probability data.
Usage
ent_gen_simpson(x, ...)
# S3 method for class 'numeric'
ent_gen_simpson(
x,
k = 1,
estimator = c("Zhang", "naive"),
as_numeric = FALSE,
...,
check_arguments = TRUE
)
# S3 method for class 'species_distribution'
ent_gen_simpson(
x,
k = 1,
estimator = c("Zhang", "naive"),
gamma = FALSE,
as_numeric = FALSE,
...,
check_arguments = TRUE
)
Arguments
- x
An object, that may be a numeric vector containing abundances or probabilities, or an object of class abundances or probabilities.
- ...
Unused.
- k
the order of Hurlbert's diversity.
- estimator
An estimator of entropy.
- as_numeric
if
TRUE
, a number or a numeric vector is returned rather than a tibble.- check_arguments
if
TRUE
, the function arguments are verified. Should be set toFALSE
to save time when the arguments have been checked elsewhere.- gamma
if
TRUE
, \(\gamma\) diversity, i.e. diversity of the metacommunity, is computed.
Details
The Generalized Simpson's Entropy (Zhang and Zhou 2010) of order \(k\) is, in the species accumulation curve,the probability for the individual sampled in rank \(k + 1\) to belong to a new species. It is a measure of diversity so long as \(k\) is lower than the number of species (Grabchak et al. 2017) .
Bias correction requires the number of individuals. It is limited to orders \(r\) less than or equal to the number of individuals in the community (Zhang and Grabchak 2016) .
Generalized Simpson's diversity cannot be estimated at a specified level of interpolation or extrapolation, and diversity partitioning is not available.
Note
The unbiased estimator is calculated by the EntropyEstimation::GenSimp.z function of the EntropyEstimation package.
See also
#' @references
Grabchak M, Marcon E, Lang G, Zhang Z (2017).
“The Generalized Simpson's Entropy Is a Measure of Biodiversity.”
Plos One, 12(3), e0173305.
doi:10.1371/journal.pone.0173305
.
Zhang Z, Grabchak M (2016).
“Entropic Representation and Estimation of Diversity Indices.”
Journal of Nonparametric Statistics, 28(3), 563–575.
doi:10.1080/10485252.2016.1190357
.
Zhang Z, Zhou J (2010).
“Re-Parameterization of Multinomial Distributions and Diversity Indices.”
Journal of Statistical Planning and Inference, 140(7), 1731–1738.
doi:10.1016/j.jspi.2009.12.023
.
Examples
# Entropy of each community
ent_gen_simpson(paracou_6_abd, k = 50)
#> # A tibble: 4 × 5
#> site weight estimator order entropy
#> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 subplot_1 1.56 Zhang 50 0.472
#> 2 subplot_2 1.56 Zhang 50 0.528
#> 3 subplot_3 1.56 Zhang 50 0.503
#> 4 subplot_4 1.56 Zhang 50 0.498
# gamma entropy
ent_gen_simpson(paracou_6_abd, k = 50, gamma = TRUE)
#> # A tibble: 1 × 3
#> estimator order entropy
#> <chr> <dbl> <dbl>
#> 1 Zhang 50 0.515