Estimate the diversity sensu stricto, i.e. the effective number of species (Grabchak et al. 2017) from abundance or probability data.
Usage
div_gen_simpson(x, k = 1, ...)
# S3 method for class 'numeric'
div_gen_simpson(
x,
k = 1,
estimator = c("Zhang", "naive"),
as_numeric = FALSE,
...,
check_arguments = TRUE
)
# S3 method for class 'species_distribution'
div_gen_simpson(
x,
k = 1,
estimator = c("Zhang", "naive"),
as_numeric = FALSE,
...,
check_arguments = TRUE
)
Arguments
- x
An object, that may be a numeric vector containing abundances or probabilities, or an object of class abundances or probabilities.
- k
the order of Hurlbert's diversity.
- ...
Unused.
- estimator
An estimator of asymptotic diversity.
- as_numeric
if
TRUE
, a number or a numeric vector is returned rather than a tibble.- check_arguments
if
TRUE
, the function arguments are verified. Should be set toFALSE
to save time when the arguments have been checked elsewhere.
Details
Bias correction requires the number of individuals.
Estimation techniques are from Zhang and Grabchak (2016) . It is limited to orders \(k\) less than or equal to the number of individuals in the community.
Generalized Simpson's diversity cannot be estimated at a specified level of interpolation or extrapolation, and diversity partitioning is not available.
References
Grabchak M, Marcon E, Lang G, Zhang Z (2017).
“The Generalized Simpson's Entropy Is a Measure of Biodiversity.”
Plos One, 12(3), e0173305.
doi:10.1371/journal.pone.0173305
.
Zhang Z, Grabchak M (2016).
“Entropic Representation and Estimation of Diversity Indices.”
Journal of Nonparametric Statistics, 28(3), 563–575.
doi:10.1080/10485252.2016.1190357
.
Examples
# Diversity of each community
div_gen_simpson(paracou_6_abd, k = 50)
#> # A tibble: 4 × 5
#> site weight estimator order diversity
#> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 subplot_1 1.56 Zhang 50 1.01
#> 2 subplot_2 1.56 Zhang 50 1.02
#> 3 subplot_3 1.56 Zhang 50 1.01
#> 4 subplot_4 1.56 Zhang 50 1.01