Estimate entropy (Allen et al. 2009) from abundance or probability data and a phylogenetic or functional dendrogram.
Usage
ent_allen(x, tree, ...)
# S3 method for class 'numeric'
ent_allen(
x,
tree,
q = 1,
normalize = TRUE,
prune = FALSE,
as_numeric = FALSE,
...,
check_arguments = TRUE
)
# S3 method for class 'species_distribution'
ent_allen(
x,
tree,
q = 1,
normalize = TRUE,
prune = FALSE,
gamma = FALSE,
as_numeric = FALSE,
...,
check_arguments = TRUE
)
Arguments
- x
An object, that may be a named numeric vector (names are species names) containing abundances or probabilities, or an object of class abundances or probabilities.
- tree
an ultrametric, phylogenetic tree. May be an object of class phylo_divent, ape::phylo, ade4::phylog or stats::hclust.
- ...
Unused.
- q
a number: the order of diversity.
- normalize
if
TRUE
, phylogenetic is normalized: the height of the tree is set to 1.- prune
What to do when some species are in the tree but not in
x
? IfTRUE
, the tree is pruned to keep species ofx
only. The height of the tree may be changed if a pruned branch is related to the root. IfFALSE
(default), the length of branches of missing species is not summed but the height of the tree is never changed.- as_numeric
if
TRUE
, a number or a numeric vector is returned rather than a tibble.- check_arguments
if
TRUE
, the function arguments are verified. Should be set toFALSE
to save time when the arguments have been checked elsewhere.- gamma
if
TRUE
, \(\gamma\) diversity, i.e. diversity of the metacommunity, is computed.
Details
Estimators to deal with incomplete sampling are not implemented. Use function ent_phylo with argument if they are needed.
The phylogenetic entropy is calculated following Allen et al. (2009) for order \(q=1\) and Leinster and Cobbold (2012) for other orders. The result is identical to the total entropy calculated by ent_phylo. It is much faster but no bias correction is available.
All species of the species_distribution
must be found in the tips of the
tree
.
References
Allen B, Kon M, Bar-Yam Y (2009).
“A New Phylogenetic Diversity Measure Generalizing the Shannon Index and Its Application to Phyllostomid Bats.”
American Naturalist, 174(2), 236–243.
doi:10.1086/600101
.
Leinster T, Cobbold C (2012).
“Measuring Diversity: The Importance of Species Similarity.”
Ecology, 93(3), 477–489.
doi:10.1890/10-2402.1
.
Examples
# entropy of each community
ent_allen(paracou_6_abd, tree = paracou_6_taxo)
#> # A tibble: 4 × 5
#> site weight estimator order entropy
#> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 subplot_1 1.56 naive 1 3.60
#> 2 subplot_2 1.56 naive 1 3.83
#> 3 subplot_3 1.56 naive 1 3.74
#> 4 subplot_4 1.56 naive 1 3.63
# gamma entropy
ent_allen(paracou_6_abd, tree = paracou_6_taxo, gamma = TRUE)
#> # A tibble: 1 × 4
#> site estimator order entropy
#> <chr> <chr> <dbl> <dbl>
#> 1 Metacommunity naive 1 3.82