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Abstract

Increasing access to large geo-referenced datasets, coupled with the development of computing power, has encouraged
the search for suitable spatial statistic tools. Distance-based methods have been largely developed in many scientific
fields to detect spatial concentration, dispersion or independence of entities at any distance and without any bias. In a
recent article, Tidu et al. (2024) highlight the qualities of the Marcon and Puech’s M function, a relative distance-based
measure, but also express reservations for the computation times required. In our article, we propose a methodological
work that seeks to specify the processing of large spatialised datasets with the M function by using R software. We appraise
the computational performance of M in two ways. At first, a precise evaluation of the computational time and memory
requirements for geo-referenced data is carried out using the dbmss package in R by means of performance tests. Then,
as suggested by Tidu et al., we consider an approximation of the geographical positions of the entities. The extent of the
deterioration of M'’s results is estimated and discussed, as the gains in computation time it provides. We give evidence
that the individual location approximation generates information loss at very small distances, implying a trade-off between
the smallest distance at which spatial interactions can be detected and computing performance. The R code used in the

article is given for the reproducibility of our results.
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Introduction

Increasing access to large spatial datasets and greater
computing power have encouraged the development of

statistical analysis tools for processing such data in
the best possible way (Baddeley et al., 2016). Empir-
ical studies at very detailed geographical levels have
thus been proposed in recent years for large datasets.
Particular attention has been paid to detect the spa-
tial structures (attraction, repulsion, independence) of
individual spatialised data using analyses that are no
longer based on zoned data but on geo-located data.
This type of approach has the advantage of preserving
the exact positions of the entities analysed. It has been
proven that any distance-based method (by consider-
ing space as continuous) circumvents statistical bias
associated with the Modifiable Areal Unit Problem
— MAUP (Arbia, 1989; Openshaw and Taylor, 1979)
due to discretising space into separate units. A great
number of studies have shown how important it is to
use this type of methodology in social sciences (Arbia,
1989; Sweeney and Feser, 1998; Marcon and Puech,
2003; Sweeney and Arabadjis, 2022) or in exact sci-
ences (Cressie, 1993; Lentz et al., 2011; Dray et al.,
2021).

In a recent article, Tidu et al. (2024) highlight
the interest of a particular statistical measure, the
M function proposed by Marcon and Puech (2010).
This measure, which we will refer to as M in the re-
mainder of the article, makes it possible to highlight
spatial structures within a spatialised distribution (at-
traction, repulsion, independence) from a study based
on the distances separating the entities analysed. How-
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ever, while this measure preserves all the richness of
individual geo-located data, it requires a longer calcu-
lation time than other distance-based measures, since
it is a relative measure (see Marcon and Puech, 2017,
for a literature review on the advantages and limita-
tions of a dozen existing distance-based measures).

Tidu et al. (2024) propose to limit M calculation
times by introducing a voluntary positioning error for
the entities analysed. For example, in their study,
industrial establishments in Sardinia (Italy) are no
longer located at their exact postal address but at the
centroid of their municipality. This repositioning re-
duces calculation times, as the number of possible dis-
tances between establishments is in fact limited to the
distances separating the centroids of the municipalit-
ies. This approach is similar to that of Scholl and Bren-
ner (2015) who proposed, for the K; function (Dur-
anton and Overman, 2005), to approximate the dis-
tances between pairs of entities by grouping them into
classes. The method of Scholl and Brenner (2015), im-
plemented in the dbmss package (Marcon et al., 2015)
for R (R Core Team, 2025) provides a considerable
gain in computational performance with little loss of
accuracy. However, the information loss due to the ap-
proximation of the location of objects should imply a
loss of accuracy in the estimation of their interactions
at the same scale, that must be assessed.

In our paper, we propose to test the ef-
fectiveness of Tidu et al. (2024)’s method and
help the researchers to choose the appropriate
method to characterise the spatial structure of
quite large datasets. First, we show the advantages
to estimate M on datasets with an order of magnitude
of 100,000 points or less, and we show that the
computation times become excessive beyond that, on
a personal computer. We then study the effect of the
geographical approximation of the locations of the
entities analysed. This methodological work, based
on a deliberately limited number of entity locations,
enables us to quantify the extent of the deterioration
in information that this approach creates. These
performance tests provide a precise answer to the
computational advantages and limitations of the
M function as a function of the size of the datasets.

The layout of the article is as follows. The two
first sections present the M function and the neces-
sary data generated for the tests. Large point sets (in
the order of several tens of thousands of points) that
are either completely random or geographically con-
centrated are drawn. The third section details the use
of the dbmss package to calculate M and its confidence
interval from a table giving the position and charac-
teristics of the points or a matrix of distances between
them. The fourth section measures the performance
of dbmss as a function of the size of the set of points,
in terms of computing time and memory requirements.
The fifth section tests the spatial approximation which
consists of grouping them together at the centre of the
cells of a grid, following the approach of Tidu et al.

(2024) which positions them at the centre of the ad-
ministrative units in which they are located. In the
last section, we conclude and discuss the advantages
and the limits of an approximation of the locations on
the results as well as on the computing time.

1. The M function

1.1 Main idea

Marcon and Puech (2010) introduced the M function
that evaluates the dependence between geo-located
points without relying on a specific zoning of space.
As any distance-based method, the calculation of M is
based on distances that separate entities under study
(establishment, shops...). The idea of M is simple: it
compares two proportions of neighbours of interest,
a local one to a global one. The local one is defined
as the proportion of neighbours of interest within a
distance . The global one is the same proportion but
defined on the whole territory. This comparison of
ratios allows the detection of:

o spatial concentration (attraction) of entities if
the proportion of local neighbours is greater than
the one observed on the entire territory,

o spatial dispersion (repulsion) of entities if the
relative proportion of local neighbours is lower
than the one observed all over the territory,

o independence between entities if the local distri-
bution of neighbours does not differ from the
global one.

This comparison of proportions of neighbours
defines M as a relative distance-based measure in a
strict sense (Marcon and Puech, 2017). The term
topographic distance-based measures is preferred for
those that use the surface area as a benchmark, as
the well-known Ripley’s K function (Ripley, 1976,
1977). The M function is also defined as a cumulative
distance-based method because the local environ-
ment is appraised within a distance r rather than
at a distance . The possibility to detect exactly
at which distance(s) the spatial concentration or
dispersion appears coupled with the interpretation of
the results opens the way to describe very precisely
the distribution of entities under study. Moreover,
an easy-computation of M is possible thanks to the
dbmss R package (Marcon et al., 2015).

M was at first introduced in the field of economics.
Marcon and Puech (2010) proved that this function
satisfies all of the requirements of Duranton and Over-
man (2005) for the evaluation of spatial distribution
of industries. Since its introduction, various studies
have described the spatial locations of industries by us-
ing M; for example, Jensen and Michel (2011) studied
the location of shops at a urban level, Coll-Martinez
et al. (2019) analysed that of the creative industries
at a metropolitan level etc. This methodology has
also rapidly been applied in other sciences including
biology (Fernandez-Gonzalez et al., 2005), geography
(Deurloo and De Vos, 2008), ecology (Marcon et al.,
2012) or seismology (Nissi et al., 2013). The M func-
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tion is now included in general textbooks of spatial
statistics such as Arbia et al. (2021), but it is less
popular than K;’s function of Duranton and Overman
(2005); see Chain et al. (2019).

1.2 Definition

The M function is based on the point process the-
ory (Mpller and Waagepetersen, 2004; Baddeley et al.,
2016). This distance-based method was developed to
analyse interactions among entities in a context of
heteregeneous space. It means that within this statist-
ical framework, we consider that any entity analysed
does not have the same probability to locate every-
where on the territory (the first-order property of the
point pattern is its intensity). Then, after controlling
for space heterogeneity, we are able to identify inter-
actions and thus detect spatial concentration or dis-
persion (the second-order property of the point pat-
tern). Space heterogeneity is a consistent assumption
for studying agglomeration of industries (see the dis-
cussion of Duranton and Overman, 2005, on that sub-
ject).

The definition of M it as follows. It compares the
relative proportion of entities of interest up to each dis-
tance r to the same ratio but defined over the entire
territory under study. In this article, we only consider
the intra-type version of M: we study the spatial struc-
ture of neighbouring points of the same type (called
points of interest) as the points at the centres of the
disks of radius r. In a mathematical terms, let us de-
note:

e x}, the location of point i of the reference type s,
at the centre of the disk (the point whose neigh-
bourhood is to be analysed),

* xj, the location of a neighbour j of the same type
as point i,

e xj, the location of a neighbour j of i, whatever
its type,

e w(.), the weight of a given neighbour. In that
sense, w(x;) defines the weight of a neighbour j
of i.

o W, the total weight of the points x‘]’-,

e W, the total weight of all points of the dataset,
whatever their type,

| (fo —xjH < r)7 the indicator function equal to
1 if x; is in the neighbourhood of x}, e.g., the
distance between xi and x; is at most equal to r,
0 otherwise.

The intra-type M function is defined as:

()= Lt ]

= xf—x§ Sr)w(x;)/zws_w(xf)
: Z#il(fo—xjugr)w(xj) — W —w(x)

A number of remarks must be made. The first
one is that the benchmark value of M is equal to 1,
whatever the distance considered. It means that for
any radius 7:

o if the estimated M result is above 1, the local

value of the ratio is greater than the global one: a

spatial concentration of entities of type s within
that radius is thus detected.

o if the estimated M result is under 1, the local

value of the ratio is lower than the global one:
a spatial dispersion of entities of type s within
that radius is thus detected.

The second remark concerns the significance of
the results. A confidence interval can be generated
thanks to Monte Carlo simulations following Marcon
and Puech (2010). A risk level is chosen (for example
5%) as well as the number of simulations (the greater
the number of simulations, the longer is the duration
of the calculation of M). Third, the package dbmss
(Marcon et al., 2015) on the R software (R Core
Team, 2025) can be used to compute the M function.
The Euclidean distance is generally preferred for the
calculation of M but the dbmss package can also to
use network distances.

2. Data simulation

The datasets we will consider in this article are ob-
tained by simulation. The R code is given in the ap-
pendix, which allows perfect reproducibility of the ex-
amples treated.

2.1 Drawing the points

A set of points is drawn by a Poisson process (whose ex-
pectation of the number of points is 5,000) in a square
window of side 1. Each point is assigned a qualitative
mark: “Case” or “Control”. 95% of points are Con-
trols. 5% are Cases, whose spatial structure is stud-
ied. The weight of the points is drawn from a gamma
distribution with free shape and scale parameters.

In this example, the drawing of points is completely
random (complete spatial randomness: CSR), i.e. there
is no simulation of attraction or dispersion of points
which could generate spatial concentrations of points
(aggregates) or, on the contrary, spatial regularities
(dispersions). Sets of aggregated points can be drawn
in a Matérn (1960) process.

The Cases are shown in figure 1: the aggregates
are clearly visible. The Controls are distributed com-
pletely randomly.

2.2 Gridding the space

Let’s consider the simulation of the Cases obtained by
the Matérn process and cut the window into a 20-by-20
square grid. This partition simulates the approxima-
tion of the position of the points of an administrative
unit to the position of its centre. It is important to
underline that the choice of the optimal level of the
grid remains an open question, as Arbia et al. (2021)
noticed (p.109): “Unfortunately, the choice of the par-
titioning scheme is usually arbitrary and an optimal
criterion to guide this choice is not available.”

The approximated position of points is shown on
the map in figure 2. Each cell now contains only one
point of each type, whose weight is the sum of the
weights of the individual points.
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Figure 1. Random draw of a set of points where the
Cases (in red) are aggregated and the Controls (in
blue) are distributed completely randomly. The size
of the points is proportional to their weight.
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Figure 2. Repositioning of points in an arbitrary
grid. The absence of Cases in a cell is easily detected
(single-colour blue dot), as is the strong presence of
Cases in a cell (two-colour dot, but predominantly
red).
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Figure 3. Value of M as a function of distance from
the reference point. The 95% confidence envelope,
obtained from simulations, appears in grey and is
centered on the value 1.

The values of M can now be calculated from the
original point set or its approximation.

3. Computing M with the dbmss
package

3.1 Necessary data

In the dbmss package, data are a set of points or a dis-
tance matrix. The set of points in figure 1 is used. The
distance matrix between all the pairs of its points is
calculated to form the data on which the performance
tests will be carried out.

3.2 Point pattern

The Mhat () function in the dbmss package is used to
estimate the M function. The theoretical reference
value for M is 1, as this function relates the propor-
tion of Cases up to a distance r to that observed over
the entire window. The aggregation of Cases will be
highlighted by values of M greater than 1 (the relat-
ive presence of Cases is greater locally than over the
whole window) and the dispersion of Cases by values
less than 1. We observe (figure 3) that M detects an
agglomeration of Cases, which is in line with the sim-
ulation of this type of point (the controls having a
completely random location on the window). The ad-
vantage of a function based on distances is clearly vis-
ible: it allows us to detect exactly at which distance(s)
the attraction phenomena occur and are the most im-
portant (for functions whose values can be compared
at different radii, such as M). In addition to estimat-
ing the M function, the Menvelope () function can be
used to calculate its global confidence interval (Dur-
anton and Overman, 2005) under the null hypothesis
of random point location. It allows parallelising the
necessary simulations. The result is shown in figure 3.

3.3 Distance matrix
Matrices can be used to process non-Euclidean dis-
tances (transport time, road distance, etc.) which can-
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not be represented by a set of points. The Mhat () and
MEnvelope () functions are the same, and provide the
same results whatever the form of the data (point set
or distance matrix).

4. Computational performance

The use of M to characterise the spatial structure of
large sets of points may be limited by its computing
time or the memory required.

4.1 Computing time

Calculating the distances between all pairs of points is
necessary to estimate M. The calculation time is there-
fore expected to increase as the square of the number
of points. The calculation time required for the ex-
act calculation is evaluated for a range of numbers of
points (figure 4a).

The calculation time is related to the size of
the set of points by a power law. It increases less
quickly than the square of the number of points. It can
be estimated very precisely (R? = 0.98) by the relation
t =to(n/n,)? where t is the estimated time for n points
(e.g.: 3.17 seconds for 100,000 points) knowing the
time fy for ny points and p is the power relation (here:
1.5).

Using a distance matrix may seem an efficient way
of saving computation time, but in reality calculating
distances is extremely fast and the whole process from
a matrix is ultimately more time-consuming. The me-
dian execution time is equal to 14 milliseconds for es-
timating the M function from a set of 5,000 points but
25 milliseconds for the corresponding distance matrix.

4.2 Memory

The memory used is evaluated for the same data sizes
(figure 4b). The memory required increases lin-
early with the number of points and is never
critical for point set sizes that can be processed
in reasonable times. This highlights Tidu et al.
(2024)’s conclusion about the power and computation
time required when using M on large datasets. The
memory used by Dtable objects to calculate M from
a distance matrix is much greater: it is that of a nu-
merical matrix, amounting to 8 bytes multiplied by
the square of the number of points, i.e. 800 MB for
10,000 points only. Since the calculation time is not
reduced by this approach, its use should be reserved
for non-Euclidean distances.

5. Effects of approximating the position
of points

Unambiguously, approximating the position of the
points results in a loss of information: in each grid
cell, the distance between all the points is set to
zero, and the distance between two points in different
cells is approximated by the distance between the
centroids of the two cells. We therefore suspect a
severe error in the estimation of M on a small scale (of

the order of magnitude of the size of the cells) and an
error that decreases with distance, when the relative
size of the cells decreases. The effect of the location
approximation is first tested on a set of aggregated
points, similar to the real Tidu et al. (2024) data.
Secondly, the case of an unstructured set of points is
considered.

5.1 Case of an aggregated distribution (Matérn)

100 sets of aggregated points (5,000 points with 5% of
Cases) are simulated. To evaluate the effect of the ap-
proximation, the exact calculation and the calculation
on the grid points are performed on each set of points.

The mean values of the estimates of M are presen-
ted in figure 5a. The size of the grid cells is equal
to 0.05. All neighbours at distances less than this
threshold are placed at zero distance: the estimate of
the function is constant up to this threshold and small-
scale aggregation is underestimated. The correlation
between the M values estimated by each method is
calculated at each distance in figure 5b.

Two results can be drawn from the estimated cor-
relation’s levels. Firstly, the correlation can be quite
low under the size of the grid. The information on
interactions at very short distances, i.e. within each
grid cell, is lost, or, more precisely, approximated by
its value at the grid scale. As a result, under the size of
the grid the approximation of locations is not optimal.
Secondly, as soon as the distance taken into account
exceeds the grid cell, the correlation is very close to 1,
and the estimated values are very similar. In that case,
if the interactions between points are studied beyond
the size of the grid, the approximation in the position
of the locations may be considered.

In the case of clustered distributions, a very
careful use of location approximation is recom-
mended, particularly for studies that suspect
localised interactions at very small distances,
such as the existence of information externalit-
ies or contagion phenomena. The approxima-
tion may or may not be acceptable depending
on the grid size chosen.

5.2 Case of a completely random distribution (CSR)
The same simulations are run with a completely ran-
dom set of points. The exact calculation and the cal-
culation on the grid points are carried out on each set
of points.

The average values are shown in figure 6a. The
mean value of M is equal to 1 at all distances by
construction: Cases and Controls are distributed com-
pletely randomly. The approximations are relatively
small in value (a few percent) but artefactual aggrega-
tion is generated at small scale. As the real value of M
varies little around 1, the correlations are much weaker
(figure 6b) in the absence of spatial structure than
in the aggregated case. To sum up, within a CSR
framework, the approximation of locations ap-
pears to be acceptable.
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Figure 6. Average estimate of the M function from the exact position of the points compared with the values
obtained by grouping the points (a) and correlation between them (b). Both Cases and Controls are drawn in

a Poisson process.

6. Discussion and conclusion

The computation burden of estimating M on
large datasets may be an issue. The calculation
time for M is below 4 seconds for a set of 100,000
points on a modern computer! and requires 25 MB
of RAM. Calculating a confidence interval from 1,000
simulations therefore takes less than 67 minutes. For
a set of five million points, the power law predicts
around 11 minutes of computing time. 1,000 simula-
tions would then take around 8 days.

Thanks to parallelization, a calculation server
would drastically increase performance, but at the
cost of a complexity of implementation that limits
its use. If we limit ourselves to the computing power
of a personal computer, exact calculation is fully
justified for data of the order of 10° points:
less than an hour is enough to calculate confidence
intervals. Since parallelising the simulations is offered
with no effort by the dbmss package, this time can
be reduced by a factor depending on the available
hardware, say 2 to 6 with modern multicore CPU’s.
Beyond that, approximating the location reduces the
size of the set of points to the number of locations
selected. Again, it may be up to 10° locations to keep
computing time acceptable, whatever the size of the
original dataset. The choice of the size of the grid (or
the administrative scale of the aggregation of points
in Tidu et al., 2024) must be done according to the
scale of the interactions under study: they can not be
characterized correctly at distances below it.

With regard to the errors generated in M’s estim-
ates when the approximation of location is used, our

IThe results presented here were obtained on a GitHub-
hosted runner under Mac OS with a virtual 3-core Apple M1
(Virtual), similar to a fast laptop computer.

findings somehow support Tidu et al. (2024)’s article,
which mentions strong correlations between M values
computed from exact and approximated Italian com-
pany location data. In our article, a strong correla-
tion is found, but not systematically. Since the spa-
tial structure of their data is probably an intermedi-
ate case between the two cases dealt with in our article
(aggregated and random theoretical distributions), the
results provided by our two contributions are comple-
mentary. The problem with the spatial approximation
comes from a possible weak correlation under the size
of the grid. The loss of information can be somewhat
important if interactions appear at a distance lower
than the size of the grid. This situation should be
analysed very attentively. Our analysis was motiv-
ated to discuss Tidu et al. (2024)'s results but a prior
study of Arbia et al. (2017) has also investigated the
subject of applying distance-based methods to spatial
datasets that include positional errors. They proposed
a first evaluation of the consequences of a positional
error not for all of the studied entities, but only for
some of them. This positional uncertainty for a given
number of entities only, is associated to an “uninten-
tional positional error”. In that situation, these uncer-
tain geo-localised entities are placed at the centroid of
the zone considered, exactly as in Tidu et al. (2024).
Arbia et al. showed on a real case (Italian manufac-
turing firms) that the error measurement is less severe
as one’s can expected. Their explanation rests on the
definition M, a relative measure: a compensation ef-
fect of positional errors is suspected between the local
ratio and the global one.

To conclude, an approximation of the spatial
locations may be considered to save computa-
tion time, given the strong correlation observed
between the values of M on exact and approx-
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imated data, but the scale of the grid must be
fine enough to be informational at small dis-
tances even if a quite important error in the es-
timates may happened. As we noticed, the choice
of the optimal level of the grid is challenging, which
calls for a certain degree of wariness in the use of the
approximated locations. Choosing the approximation
scale is a trade-off between accuracy, i.e. a small dis-
tance threshold above which results are accurate, and
speed with a coarse grid.

Appendix

R code is available at the following address:
https://ericmarcon.github.io/MLargeDataSets/
Appendix.pdf
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