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Abstract

Increasing access to large geo-referenced datasets, coupled with the development of comput-
ing power, has encouraged the search for suitable spatial statistic tools. In this line, distance-
based methods have been largely developed in many scientific fields to detect spatial concen-
tration, dispersion or independence of entities at any distance and without bias. In a recent
article, Tidu et al. (2024) highlight the qualities of the M function (Marcon and Puech, 2010),
a relative distance-based measure, but they also express reservations for the computation times
required. In our article, we propose a methodological work that seeks to specify the processing
of large spatialised datasets with the M function by using R software. We appraise the compu-
tational performance of M into two ways. At first, a precise evaluation of the computational
time and memory requirements for geo-referenced data is carried out using the dbmss package
in R by means of performance tests. Then, as suggested by Tidu et al. (2024), we consider
an approximation of the geographical positions of the entities. The extent of the deterioration
in the estimate of M is estimated and discussed, as are gains in computation time. We give
evidence that the individual location approximation generates information loss at small dis-
tances, implying a trade-off between the smallest distance at which spatial interactions can be
detected and computing performance. We recommend designing the analysis of large datasets
taking it into account. The R code used in the article is given for the reproducibility of our
results.

The code used in the article “On the Computation of Large Spatial Datasets With M” is detailed
here.

1 Data simulation
1.1 Drawing the points
A set of points is drawn at random with the following parameters:



• the number of points,
• the proportion of controls,
• the shape and scale of the gamma distribution.

library("tidyverse")
library("spatstat")
library("dbmss")

par_points_nb <- 5000
par_case_ratio <- 1/20
par_size_gamma_shape <- 0.95
par_size_gamma_scale <- 10

The X_csr() function is used to draw a series of points according to certain parameters. The
points_nb argument, which sets the number of points, can be modified; the other parameters have
their values set above.

X_csr <- function(
points_nb,
case_ratio = par_case_ratio,
size_gamma_shape = par_size_gamma_shape,
size_gamma_scale = par_size_gamma_scale) {

points_nb %>%
runifpoint() %>%
as.wmppp() ->
X

cases_nb <- round(points_nb * case_ratio)
controls_nb <- points_nb - cases_nb
c(rep("Control", controls_nb), rep("Case", cases_nb)) %>%
as.factor() ->
X$marks$PointType

rgamma(
X$n,
shape = size_gamma_shape,
scale = size_gamma_scale

) %>%
ceiling() ->
X$marks$PointWeight

X
}

# Example
X <- X_csr(par_points_nb)
# Map the cases
autoplot(X[X$marks$PointType == "Case"])
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The size distribution is shown in the histogram below:

# Point size distribution
hist(
X$marks$PointWeight,
breaks = unique(X$marks$PointWeight),
main = "",
xlab = "Point size"

)
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The X_matern() function is used to draw a semiset of points whose Cases are concentrated by
a Matérn (1960) process. The parameters are

• κ: the expected number of clusters,
• scale: their radius.

# Expected number of clusters
par_kappa <- 20
# Cluster radius
par_scale <- 0.1

The function code is as follows:
X_matern <- function(

points_nb,
case_ratio = par_case_ratio,
kappa = par_kappa,
scale = par_scale,
size_gamma_shape = par_size_gamma_shape,
size_gamma_scale = par_size_gamma_scale) {

cases_nb <- round(points_nb * case_ratio)
controls_nb <- points_nb - cases_nb
# CSR controls
controls_nb %>%
runifpoint() %>%
superimpose(

# Matern cases
rMatClust(
kappa = kappa,
scale = scale,
mu = cases_nb / kappa

)
) %>%
as.wmppp() ->
X

# Update the number of cases
cases_nb <- X$n - controls_nb
c(rep("Control", controls_nb), rep("Case", cases_nb)) %>%
as.factor() ->
X$marks$PointType
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rgamma(
X$n,
shape = size_gamma_shape,
scale = size_gamma_scale

) %>%
ceiling() ->
X$marks$PointWeight

X
}

# Example
X <- X_matern(par_points_nb)
# Map the cases
autoplot(X) +
scale_size(range = c(0, 3))
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1.1.1 Space grid

The number of rows and columns is set:
# Number of rows and columns
par_partitions <- 20

The group_points() function gathers all the points it contains at the centre of each grid cell.
This simulates the usual approximation of the position of the points in an administrative unit to
the position of its centre. The position of the points is slightly noisy to enable M to be calculated.
The group_points_to_plot() function merges the points to produce a map.
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# Group points into cells
group_points <- function(X, partitions = par_partitions) {
X %>%
with(tibble(

x,
y,
PointType = marks$PointType,
PointWeight = marks$PointWeight)

) %>%
mutate(

x_cell = ceiling(x * partitions) / partitions - 1 / 2 / partitions,
y_cell = ceiling(y * partitions) / partitions - 1 / 2 / partitions,
.keep = "unused"

) %>%
rename(x = x_cell, y = y_cell) %>%
as.wmppp(window = X$window, unitname = X$window$units) %>%
rjitter()

}
# Group points and merge them
group_points_to_plot <- function(X, partitions = par_partitions) {
X %>%
with(tibble(

x,
y,
PointType = marks$PointType,
PointWeight = marks$PointWeight)

) %>%
mutate(

x_cell = ceiling(x * partitions) / partitions - 1 / 2 / partitions,
y_cell = ceiling(y * partitions) / partitions - 1 / 2 / partitions

) %>%
group_by(PointType, x_cell, y_cell) %>%
summarise(n = n(), PointWeight = sum(PointWeight)) %>%
rename(x = x_cell, y = y_cell) %>%
as.wmppp(window = X$window, unitname = X$window$units)

}

The figure is obtained using the following code:

X %>% group_points_to_plot() %>% autoplot(alpha = 0.5)

6



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Type

Case

Control

Weight

100

200

300

2 Calculation of M
The distances at which the M function is calculated are chosen from r.

r <- c((0:9) / 100, (2:10) / 20)

2.1 Necessary data
In the dbmss package (Marcon et al., 2015), the function applies to a set of points, object of class
wmppp, or to a matrix of distances, object of class Dtable.

We start with an array (data.frame) containing the columns x, y, PointType and PointWeight.
The spatial co-ordinates of the points are given by the x and y columns.

# Extract a dataframe from the point set
points_df <- with(X, data.frame(x, y, marks))
head(points_df)

## x y PointWeight PointType
## 1 0.4550716 0.31775637 4 Control
## 2 0.6463730 0.04396279 2 Control
## 3 0.9156488 0.23361975 2 Control
## 4 0.9724551 0.87464816 1 Control
## 5 0.8907927 0.26205266 4 Control
## 6 0.9561687 0.96813173 7 Control
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2.2 Set of points
The Mhat() function is used to estimate the value of the M function.

X %>%
Mhat(r = r, ReferenceType = "Case") %>%
autoplot()
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The Menvelope() function is used to calculate the confidence interval of the function value under
the null hypothesis of random location of the points. The global confidence interval (Duranton and
Overman, 2005) is calculated by specifying the argument Global = TRUE.

X %>%
MEnvelope(r = r, ReferenceType = "Case", Global = TRUE) %>%
autoplot()
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2.3 Distance matrix
The as.Dtable() function is used to create a Dtable object.

d_matrix <- as.Dtable(points_df)

It can also be created from a distance matrix obtained in another way, containing non-Euclidean
distances for example (transport time, road distance, etc.).

# A Dtable containing two points
Dmatrix <- matrix(c(0, 1, 1, 0), nrow = 2)
PointType <- c("Type1", "Type2")
PointWeight <- c(2, 3)
Dtable(Dmatrix, PointType, PointWeight)

## $Dmatrix
## [,1] [,2]
## [1,] 0 1
## [2,] 1 0
##
## $n
## [1] 2
##
## $marks
## $marks$PointType
## [1] Type1 Type2
## Levels: Type1 Type2
##
## $marks$PointWeight
## [1] 2 3
##
##
## attr(,"class")
## [1] "Dtable"
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The Mhat() and MEnvelope() functions are the same as for point sets.

identical(
Mhat(X, r = r, ReferenceType = "Case", NeighborType = "Control"),
Mhat(d_matrix, r = r, ReferenceType = "Case", NeighborType = "Control")

)

## [1] TRUE

d_matrix %>%
MEnvelope(r = r, ReferenceType = "Case", Global = TRUE) %>%
autoplot()
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3 Performance of M
The X_to_M() function calculates the M function and returns the vector of its values for each
distance. It is useful for measuring execution times.

# Compute M
X_to_M <- function(X) {
X %>%
Mhat(r = r, ReferenceType = "Case") %>%
pull("M")

}

3.1 Calculation time
The time required for an exact calculation is evaluated for a range of numbers of points specified
in X_sizes.
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X_sizes <- c(1000, 5000, 10000, 50000, 100000)

The test_time() function is used to measure the execution time of an evaluation of the M
function.
library("microbenchmark")
test_time <- function(points_nb) {
X <- X_csr(points_nb)
microbenchmark(X_to_M(X), times = 4L) %>%
pull("time")

}

X_sizes %>%
sapply(FUN = test_time) %>%
as_tibble() %>%
pivot_longer(cols = everything()) %>%
rename(Size = name) %>%
group_by(Size) %>%
summarise(Time = mean(value) / 1E9, sd = sd(value) / 1E9) %>%
mutate(
Size = as.double(

plyr::mapvalues(
.$Size,
from = paste0("V", seq_along(X_sizes)),
to = X_sizes

)
)

) -> M_time
M_time %>%

ggplot(aes(x = Size, y = Time)) +
geom_point() +
geom_errorbar(aes(ymin = Time - sd, ymax = Time + sd)) +
scale_x_log10() +
scale_y_log10()
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The calculation time is related to the size of the set of points by a power law.
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# Model
M_time %>%
mutate(logTime = log(Time), logSize = log(Size)) ->
M_time_log

M_time_lm <- lm(logTime ~ logSize, data = M_time_log)
summary(M_time_lm)

##
## Call:
## lm(formula = logTime ~ logSize, data = M_time_log)
##
## Residuals:
## 1 2 3 4 5
## 0.50039 -0.50218 -0.36531 0.05939 0.30771
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -18.3221 1.2837 -14.27 0.000745
## logSize 1.6613 0.1346 12.34 0.001146
##
## (Intercept) ***
## logSize **
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4947 on 3 degrees of freedom
## Multiple R-squared: 0.9807, Adjusted R-squared: 0.9742
## F-statistic: 152.3 on 1 and 3 DF, p-value: 0.001146

The microbenchmark package proposed by Mersmann (2023) is used to compare the computation
time of the function between a set of points and a matrix of distances.

The calculation of distances is extremely fast in the Mhat() function: the matrix saves time,
but the complete processing from a matrix is ultimately longer.

library("microbenchmark")
mb <- microbenchmark(
Mhat(X, r = r, ReferenceType = "Case", NeighborType = "Control"),
Mhat(d_matrix, r = r, ReferenceType = "Case", NeighborType = "Control"),
times = 4L

)

3.2 Memory
The memory used is evaluated with the profmem package (Bengtsson, 2021).

# RAM
library("profmem")
test_ram <- function(points_nb) {

X <- X_csr(points_nb)
profmem(X_to_M(X)) %>%
pull("bytes") %>%
sum(na.rm = TRUE)

}
sapply(X_sizes, FUN = test_ram) %>%
tibble(Size = X_sizes, RAM = . / 2^20) ->
M_ram

M_ram %>%
ggplot(aes(x = Size, y = RAM)) +
geom_point() +
geom_line()
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The memory required (in MB) increases linearly with the number of points.

# Model
lm(RAM ~ Size, data = M_ram) %>% summary()

##
## Call:
## lm(formula = RAM ~ Size, data = M_ram)
##
## Residuals:
## 1 2 3 4
## 0.0032318 -0.0021685 -0.0011180 -0.0002664
## 5
## 0.0003211
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.431e-02 1.400e-03 10.22 0.002
## Size 2.544e-04 2.786e-08 9131.23 2.9e-12
##
## (Intercept) **
## Size ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.00235 on 3 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 8.338e+07 on 1 and 3 DF, p-value: 2.897e-12

4 Effects of approximating the position of the points
The number of test repetitions is set by simulations_n.
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simulations_n <- 100

4.1 Case of an aggregated distribution (Matérn)
X_matern_list contains simulations_n drawn from the set of points. X_matern_grouped_list
contains the same simulations, whose points have been grouped in the grid cells.

# Simulate X
X_matern_list <- replicate(
simulations_n,
expr = X_matern(par_points_nb),
simplify = FALSE

)
# Group points and compute M
X_matern_grouped_list <- lapply(
X_matern_list,
FUN = group_points,
partitions = par_partitions

)

To assess the effect of the position approximation, the exact calculation and the calculation on
the grid points are performed on each set of points.

library("pbapply")
# Compute M
M_matern_original <- pbsapply(X_matern_list, FUN = X_to_M)
M_matern_grouped <- pbsapply(X_matern_grouped_list, FUN = X_to_M)

The approximate calculation is very fast because it reduces the number of points to the number
of cells, provided you take advantage of this in the code used for the calculation. This is not the
case here: the dbmss package does not provide for this approximation. The M_hat() function is
therefore applied to the grouped set of points, but calculated in the same way as with the original
set of points.

The mean values of the M estimates are shown below.

tibble(
r,
Exact = rowMeans(M_matern_original),
Grouped = rowMeans(M_matern_grouped)

) %>%
pivot_longer(
cols = !r,
names_to = "M",
values_to = "value"

) %>%
ggplot(aes(x = r, y = value, color = M, shape = M, linetype = M)) +
geom_line() +
geom_point()
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The correlation between the M values estimated by each method is calculated at each distance r.

# Correlation
M_cor <- function(r_value, M_original, M_grouped) {
r_index <- which(r == r_value)
# Return
c(

# Distance
r_value,
# Correlation
cor(M_original[r_index, ], M_grouped[r_index, ])

)
}
sapply(
r,
FUN = M_cor,
M_original = M_matern_original,
M_grouped = M_matern_grouped

) %>%
t() %>%
as_tibble() %>%
rename(r = V1, correlation = V2) %>%
ggplot(aes(x = r, y = correlation)) +
geom_point() +
geom_line()

15



0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5
r

co
rr

el
at

io
n

The correlation is very high as soon as the distance taken into account exceeds the grid cell.
The values are then compared.
# Compare values
M_bias <- function(r_value, M_original, M_grouped) {
r_index <- which(r == r_value)
# Return
c(

# Distance
r_value,
# Relative error
mean((M_grouped[r_index, ] - M_original[r_index, ]) / M_original[r_index, ]),
# Standardised error sd
sd(M_grouped[r_index, ] - M_original[r_index, ]) / mean(M_grouped[r_index, ]),
# Coefficient of variation
sd(M_original[r_index, ] / mean(M_original[r_index, ]))

)
}
sapply(
r,
FUN = M_bias,
M_original = M_matern_original,
M_grouped = M_matern_grouped

) %>%
t() %>%
as_tibble() %>%
rename(r = V1, `Relative error` = V2, `Error CV` = V3, `M CV` = V4) %>%
ggplot() +
geom_point(aes(x = r, y = `Relative error`)) +
geom_errorbar(

aes(
x = r,
ymin = `Relative error` - `Error CV`,
ymax = `Relative error` + `Error CV`

)
) +
geom_errorbar(aes(x = r, ymin = -`M CV`, ymax = `M CV`), col = "red")
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The figure above shows, in red, the variability of the value of M (its coefficient of variation)
over the course of the simulations. By definition, the mean value is error-free. At short distances,
the values of M vary greatly for the same point process, depending on the stochasticity of its runs.
As M is a cumulative function, it stabilises as distance increases.

The average relative error (to the exact value of M), due to the approximation of the position
of the points, is shown in black, with its standard deviation normalised by the exact value of M .
It is small, less than 10%, even at short distances.

4.2 Case of a completely random distribution (CSR)
X_csr_list contains simulations_n draws from the set of points.
# Simulate X
X_csr_list <- replicate(
simulations_n,
expr = X_csr(par_points_nb),
simplify = FALSE

)
# Group points and compute M
X_csr_grouped_list <- lapply(
X_csr_list,
FUN = group_points,
partitions = par_partitions

)

The exact calculation and the calculation on the points of the grid are carried out on each set
of points.
# Compute M
system.time(M_csr_original <- pbsapply(X_csr_list, FUN = X_to_M))
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## user system elapsed
## 3.129 0.173 1.830

system.time(M_csr_grouped <- sapply(X_csr_grouped_list, FUN = X_to_M))

## user system elapsed
## 3.018 0.112 1.682

The average values are shown below.

tibble(
r,
Exact = rowMeans(M_csr_original),
Grouped = rowMeans(M_csr_grouped)

) %>%
pivot_longer(
cols = !r,
names_to = "M",
values_to = "value"

) %>%
ggplot(aes(x = r, y = value, color = M, shape = M, linetype = M)) +
geom_line() +
geom_point()
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The correlation between the M values calculated by each method is calculated at each distance r.

# Correlation
sapply(
r,
FUN = M_cor,
M_original = M_csr_original,
M_grouped = M_csr_grouped

) %>%
t() %>%
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as_tibble() %>%
rename(r = V1, correlation = V2) %>%
ggplot(aes(x = r, y = correlation)) +
geom_point() +
geom_line()
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In the absence of spatial structure, correlations are much weaker.
The values are compared.

# Compare values
sapply(
r, FUN = M_bias,
M_original = M_csr_original,
M_grouped = M_csr_grouped

) %>%
t() %>%
as_tibble() %>%
rename(r = V1, `Relative error` = V2, `Error CV` = V3, `M CV` = V4) %>%
ggplot() +
geom_point(aes(x = r, y = `Relative error`)) +
geom_errorbar(

aes(
x = r,
ymin = `Relative error` - `Error CV`,
ymax = `Relative error` + `Error CV`

)
) +
geom_errorbar(aes(x = r, ymin = -`M CV`, ymax = `M CV`), col = "red")
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The figure above is constructed in the same way as for aggregated point sets. In the absence of
spatial structure, the value of M varies much less.

In the presence of a spatial structure, the estimation error is large at short distances. It becomes
negligible beyond the grid cell.
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