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Abstract
Code to reproduce the figures of the main text.

1 Theoretical example
This section allows reproducing the theoretical example presented in the main
text of Marcon and Puech (2023). Analyses rely on the dbmss (Marcon et al.,
2015) package for R (R Core Team, 2023).

1.1 Dataset simulation
We build a point pattern made of cases (the points of interest) and controls (the
background distribution of points).

Cases are a Matérn (Matérn, 1960) point pattern with κ (expected) clusters
of µ (expected) points in a circle of radius scale. Controls are a Poisson point
pattern whose density λ decreases exponentially along the y-axis (we will call
“north” the higher y values).

library(dplyr)
library(dbmss)
# Simulation of cases (clusters)
rMatClust(kappa = 10, scale = 0.05, mu = 10) %>%

as.wmppp ->
CASES

CASES$marks$PointType <- "Cases"
# Number of points
CASES$n

## [1] 97

# Simulation of controls (random distribution)
rpoispp(function(x, y) {1000 * exp(-2 * y)}) %>%

as.wmppp ->
CONTROLS

CONTROLS$marks$PointType <-"Controls"
# Number of points
CONTROLS$n



## [1] 435

# Mixed patterns (cases and controls)
ALL <- superimpose(CASES, CONTROLS)
autoplot(ALL)
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1.2 Calculate and plot M Cases

# Fix the number of simulations and the level of risk
NumberOfSimulations <- 1000
Alpha <- .01

# Calculate and plot M Cases
ALL %>%

MEnvelope(
ReferenceType="Cases",
SimulationType = "RandomLocation",
NumberOfSimulations = NumberOfSimulations,
Alpha = Alpha,
Global = TRUE

) ->
M_env_cases

autoplot(M_env_cases)
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The plot shows a clear relative concentration of cases.

1.3 Map M results
To plot the individual values of M around each case, a distance must be chosen.
Then, the function must be computed at this distance with individual values.
Finally, a map is produced by smoothing the individual values and plotted.

# Choose the distance to plot
Distance <- 0.1

# Calculate the M values to plot
ALL %>%

Mhat(
r = c(0, Distance),
ReferenceType = "Cases",
NeighborType = "Cases",
Individual = TRUE

) ->
M_TheoEx

# Map resolution
resolution <- 512

# Create a map by smoothing the local values of M
M_TheoEx_map <- Smooth(

ALL,
fvind = M_TheoEx,
distance = Distance,
Nbx = resolution, Nby = resolution

)

# Plot the point pattern with values of M(Distance)
plot(M_TheoEx_map, main = "")
# Add the cases to the map
points(

ALL[ALL$marks$PointType == "Cases"],
pch = 20, col = "green"

)
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# Add contour lines
contour(M_TheoEx_map, add = TRUE)
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We can see that cases are concentrated almost everywhere (local M value
above 1) because we chose a Matérn point pattern.

The areas with the higher relative concentration are located in the north of
the map because the controls are less dense there.

1.4 Compare with the density of cases
The density of cases is plotted. High densities are not similar to high relative
concentrations in this example because the control points are not homogeneously
distributed.

plot(density(CASES), main = "")
points(

ALL[ALL$marks$PointType == "Cases"],
pch = 20, col = "green"

)
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2 Suzanne Lenglen Park
2.1 Data
Our data is extracted from “Paris open data” 1.

2.1.1 Data wrangling

Data are stored in trees_2021.zip which contains two GeoJSON files:
• trees_2021 stores all trees of the city of Paris in 2021.
• trees_logged contains all trees logged after 2021.
They must be read. Data are projected into the Lambert 93 datum so that

coordinates are in meters.

unzip("data/trees_2021.zip", exdir = "data")
library("sf")
read_sf("data/trees_2021.geojson") %>%

st_transform(crs = 2154) ->
trees_all_raw

read_sf("data/trees_logged.geojson") %>%
st_transform(crs = 2154) ->
trees_logged_raw

All trees The first dataset contains all trees in Paris in 2021, including those
to be cut.

Trees from the Suzanne Lenglen park are selected. Columns of interest are:
• ID: a numeric unique identifier for each tree.
• Species_name: the scientific name of the tree species, i.e. Genus species.
• Status: Alive.
• Genus.

1https://opendata.paris.fr.
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• Species.
• French_species_name: vernacular name.
• Circumference: in cm.

library("dplyr")
trees_all_raw %>%

# Filter Suzanne Lenglen park
filter(
adresse == "PARC OMNISPORT SUZANNE LENGLEN / 7 BOULEVARD DES FRERES VOISIN"

) %>%
# Create a field with the species name
mutate(Species_name = as.factor(paste(genre, espece))) %>%
# Create a field with the status
mutate(Status = "Alive") %>%
# Genus and Species fields
mutate(Genus = as.factor(genre)) %>%
mutate(Species = as.factor(espece)) %>%
# Rename and finally select columns
rename(
ID = idbase,
French_species_name = libellefrancais,
Circumference = circonferenceencm

) %>%
select(
ID,
Species_name,
Status,
Genus,
Species,
French_species_name,
Circumference) ->

trees_all

# Number of trees
trees_all %>% nrow()

## [1] 1472

We have 1472 trees in the park.

Logged trees Logged trees are in the second dataset.
Their status is “Logged”. An extra field, Logging_reason contains the mo-

tivation to cut them off (in French). Circumference is absent.

# Tree description
trees_logged_raw %>%

# Filter Suzanne Lenglen park
filter(
adresse == "PARC OMNISPORT SUZANNE LENGLEN / 7 BOULEVARD DES FRERES VOISIN"

) %>%
# Exclude unidentified trees
filter(
!is.na(especearbreprecedent),
!is.na(libellefrancaisarbreprecedent),
!is.na(genrearbreprecedent)

) %>%
filter(libellefrancaisarbreprecedent != "Non spécifié") %>%
filter(especearbreprecedent != "n. sp.") %>%
# Create a field with the species name
mutate(
Species_name = as.factor(paste(genrearbreprecedent, especearbreprecedent))

) %>%
# Create a numeric ID
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mutate(ID = as.integer(idbase)) %>%
# Create a field with the status
mutate(Status = "Logged") %>%
# Genus and Species fields
mutate(Genus = as.factor(genrearbreprecedent)) %>%
mutate(Species = as.factor(especearbreprecedent)) %>%
# Reason for logging (in French)
mutate(Logging_reason = motifabattagearbreprecedent) %>%
# Rename and finally select columns
rename(
French_species_name = libellefrancaisarbreprecedent

) %>%
select(
ID,
Species_name,
Status,
Genus,
Species,
Logging_reason,
French_species_name

) ->
trees_logged

# Number of trees
trees_logged %>% nrow()

## [1] 48

48 among the 1472 trees of the park were logged.

Merge The two datasets are merged here.
The logged trees must be removed from the first one. Circumference is

removed because it is missing from the logged trees dataset.
# All trees
trees_all %>%

# Delete the logged trees
filter(!(ID %in% trees_logged$ID)) %>%
# Delete the circumference that is absent in trees_logged
mutate(Circumference = NULL) %>%
# Bind the logged trees
bind_rows(trees_logged) ->
trees_no_circumference

Circumferences of all trees, including logged ones, are in tree_all from
where they can be recovered.
# Prepare a tibble with circumferences
trees_all %>%

select(ID, Circumference) %>%
# inner_join.sf refuses sf objects
st_set_geometry(NULL) ->
Circumferences

# Add the Circumference of trees
trees_no_circumference %>%

inner_join(Circumferences, by = "ID") ->
trees

Shorter logging reasons Logging reasons can be:
• Decaying: the tree’s condition is not healthy enough to keep it safely in a

public park.
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• infested: the tree is a maple affected by the (contagious) sooty bark dis-
ease, caused by the fungus Cryptostroma corticale.

library("stringr")
trees$Logging_reason[is.na(trees$Logging_reason)] <- ""
trees$Logging_reason %>%

str_replace("Arbre.*", "Decaying") %>%
str_replace("Foyer.*", "Infested") ->
trees$Logging_reason

Factors Several fields are converted to factors for efficiency.

trees$Logging_reason <- as.factor(trees$Logging_reason)
trees$Status <- as.factor(trees$Status)
trees$French_species_name <- as.factor(trees$French_species_name)

2.1.2 Point patterns

dbmms uses weighted, marked, planar point patterns (wmppp). A wmppp
named trees_infested is built. Point marks are their basal area (as weight)
and either their logging reason or their genus if they are alive.

library("dbmss")
trees %>%

# Weight is the basal area
mutate(PointWeight = Circumference^2 / 4 / pi) %>%
mutate(
PointType = ifelse(

Logging_reason == "",
as.character(Genus),
as.character(Logging_reason)

)
) %>%
# Add X and Y
bind_cols(st_coordinates(trees)) %>%
wmppp(
window = as.owin(st_bbox(trees)),
unitname = c("meter", "meters")
) ->

trees_infested

We also need a point pattern to describe the park before logging, as a refer-
ence.

trees_all %>%
# Weight is the basal area
mutate(PointWeight = Circumference^2 / 4 / pi) %>%
# Genus is the point type
rename(PointType = Genus) %>%
# Add X and Y
bind_cols(st_coordinates(trees_all)) %>%
wmppp(
window = as.owin(st_bbox(trees_all)),
unitname = c("meter", "meters")
) ->

trees_2021
autoplot(trees_2021) +

ggplot2::labs(size="Basal area", color="Genus")
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The map shows the tree genera. Maples (Acer spp.) are the most abundant
trees in the park.

2.2 Spatial concentration of maple trees
The M statistic is computed to detect the spatial concentration of maple trees
before logging.

Distance <- 15
trees_2021 %>%

MEnvelope(
r = 0:(10 * Distance) / 5,
ReferenceType = "Acer",
NeighborType = "Acer",
NumberOfSimulations = NumberOfSimulations

) ->
M_Acer

autoplot(M_Acer)
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2.2.1 Map

To map it, individual values must be calculated at the chosen distance, that is
15 meters.
trees_2021 %>%

Mhat(
r = c(0, Distance),
ReferenceType = "Acer",
NeighborType = "Acer",
Individual = TRUE

) ->
M_ind_Acer

A map is produced by smoothing the individual values. To respect the
geometry of the map, the ratio of rows to columns of the image to produce is
first calculated.
# Window ratio
ratio <- with(

trees_infested$window,
{
(yrange[2] - yrange[1]) / (xrange[2] - xrange[1])
}

)

# Smooth the values
trees_2021 %>%

Smooth(
fvind = M_ind_Acer,
distance = Distance,
Nbx = resolution, Nby = resolution * ratio

) ->
map_acer

plot(map_acer, main = "")
# Add contour lines
contour(map_acer, nlevels = 10, add = TRUE)
# Add infested trees
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points(
trees_infested[trees_infested$marks$PointType == "Infested"],
pch = 20

)
# And decaying trees
points(

trees_infested[trees_infested$marks$PointType == "Decaying"],
pch = 4,
col = "green"

)
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Logged trees are shown on the map: infested trees are back points and
decaying trees are green crosses.

2.2.2 Alternative distances

The 15-meter distance has been chosen because it is a plausible distance of
contagion between trees. A shorter distance, say 6 meters, would be justified
as a peak of M(distance) but neighbors are scarse at this scale, leading to
less statistical power. At greater distances, such as 30m, concentration is still
significant but neighborhoods overlap more, leading to less clear results.

Both alternative distances are tested here.
The map made with 6-meter-radius neighborhoods is similar to the previous

one.
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30-meter-radius neighborhoods are shown below:
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Increasing the distance blurs the information where high and low values
overlap and cancel out.

In conclusion, the appropriate distance should be chosen according to the
knowledge of the studied process.

2.3 Contagion and spatial structure
To conclude this study, we show that infested trees are located in areas of high
concentration of maples.
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2.3.1 Location of infested maple trees

# Window ratio
ratio <- with(

trees_infested$window,
{
(yrange[2] - yrange[1]) / (xrange[2] - xrange[1])
}

)

# Smooth the values
trees_2021 %>%

Smooth(
fvind = M_ind_Acer,
distance = Distance,
Nbx = resolution, Nby = resolution * ratio

) ->
map_acer

plot(map_acer, main = "")
# Add contour lines
contour(map_acer, nlevels = 10, add = TRUE)
# Show all maple trees
trees_acer <- trees_2021[trees_2021$marks$PointType == "Acer"]
# Add infested trees
points(

trees_infested[trees_infested$marks$PointType == "Infested"],
pch = 20

)
# And decaying trees
points(

trees_infested[trees_infested$marks$PointType == "Decaying"],
pch = 4, col = "green"

)
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Infested trees are present in the areas where maples are concentrated.

2.3.2 Concentration of maples around infested trees

To test the intertype concentration between sane and infested maple trees,
the following M -intertype is computed: we evaluate whether the proportion of
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maples trees higher in the close neighborhood of infested maples than elsewhere.
If so, results give support to the existence of a contagious disease (Hantsch et al.,
2014).

trees_infested %>%
MEnvelope(

r = 0:(10 * Distance) / 5,
ReferenceType = "Infested",
NeighborType = "Acer",
NumberOfSimulations = NumberOfSimulations

) ->
M_infested_Acer

autoplot(M_infested_Acer)
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The M plot detects a significant concentration of maples around infested
maples.

2.3.3 Map

The map is produced.
trees_infested %>%

Mhat(
ReferenceType = "Infested",
NeighborType = "Acer",
Individual = TRUE

) ->
M_ind_infested_Acer

# Smooth the values
trees_infested %>%

Smooth(
fvind = M_ind_infested_Acer,
distance = Distance,
Nbx = resolution, Nby = resolution * ratio

) ->
map_infested_acer
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plot(map_infested_acer, main = "")
# Add contour lines
contour(map_infested_acer, nlevels = 5, add = TRUE)

# Add infested trees
points(

trees_infested[trees_infested$marks$PointType == "Infested"],
pch = 20

)
# And decaying trees
points(

trees_infested[trees_infested$marks$PointType == "Decaying"],
pch = 4,
col = "green"

)
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The map shows that the local concentration of maple around infested trees
is generally high (warm colors around points).
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