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This is a comment on 3Blue1Brown’s video about solving Wordle using in-
formation theory. Please watch it before reading what follows for clarity.

1 Rationale
The video is “an excuse to teach a lesson on information theory and entropy”.
As usual on 3B1B’s channel, it is excellent but the way the total information of
a set of words is split into the information of the color pattern and that of the
remaining set was not obvious for me. That’s why I explicit it here and show
that it is a bit more complicated when word probabilities are not equal.

2 The simple case
In the simple case, words are equally probable. In the video at time 15:43, all
the 12972 possible words (those allowed by the rules of the game) are considered
equally probable. Their average information, i.e. their entropy, is log2(12972),
i.e. 13.66 bits. This is explained in the “Information theory basics” part of the
video.

The word “SLATE” has been proposed and produced a color pattern (yellow,
grey, yellow, grey, grey) compatible with 578 words. The information of this
possible set is log2(578), i.e. 9.17 bits.

When the word “SLATE” is chosen, this color pattern is obtained if the
hidden word is one of the 578 words that are compatible with it. The probabil-
ity to obtain it is simply 578/12972 since all words have the same probability
to be the hidden one. The information brought by the color pattern is thus
log2(12972/578).

The important result at this stage is that the total entropy (9.17 bits) can
be partitioned between the entropy of the possible set of words (9.17 bits) and
the information brought by the knowledge of the color pattern of the tentative
word (4.49 bits). The latter is not an entropy as defined for the two sets of
words: it is not the average information of 12972/578 equally probable sets.

https://www.youtube.com/watch?v=v68zYyaEmEA
https://www.youtube.com/watch?v=v68zYyaEmEA&t=943s
https://www.youtube.com/watch?v=v68zYyaEmEA&t=484s


That said, the proof of the validity of the partitioning is straightforward:

578 ∗ 12972/578 = 12972

so

log2(578) + log2(12972/578) = log2(12972).

3 Unequal weights
This proof does not hold when words have unequal weights. Actually, the par-
titioning is not exact. At 24:03, the 12.54 bits of the whole set of words (with
unequal probabilities) is not the sum of the entropy of the possible set (8.02
bits) and that brought by the color pattern (4.42 bits): 0.10 bits are missing.

Qualitatively, the partitioning can’t be exact because none of the two terms
of the sum contains any information about the distribution of the set of impos-
sible words while the total entropy does.

The partitioning of entropy has been derived by Rao and Nayak (1985). It
is widely used in the measurement of biodiversity (e.g. Marcon et al., 2012).

The whole set of words must be split into two subsets when the color pattern
is known: the possible words and the impossible ones. The total entropy (called
γ entropy after Whittaker, 1960) is the sum of the average entropy of the two
subsets (called α entropy) and their β entropy, i.e. the relative entropy that
describes how different they are from the whole set.

Note pw the probability of the word w, w+ =
∑

+ pw the sum of the probabil-
ities of the words of the possible subset and w− =

∑
− pw that of the impossible

subset.
The entropy of the possible subset is:

H+ =
∑
+

(pw/w+)log2(w+/pw),

and H− is entropy of the impossible subset. Since the probabilities are consid-
ered in each subset, they are divided by the weight of their subset in order to
sum to 1.

α entropy is the weighted average entropy of the subsets:

w+H+ + w−H−.

Since no word is shared between subsets, β entropy is simply (Marcon et al.,
2012):

w+log2(1/w+) + w−log2(1/w−).

Their sum is γ entropy, i.e. that of the whole set of words:∑
pwlog2(1/pw)
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https://www.youtube.com/watch?v=v68zYyaEmEA&t=1443s


The relation α entropy plus β entropy equals γ entropy can be arranged
considering that w+ = 1− w− to obtain:

∑
pwlog2(1/pw) = H+ + log2(1/w+)

+ w−[H− −H+ + log2w+/w−].
(1)

The left side of the equality is the total (γ) entropy, 12.54 bits in the example.
The first two terms on the right side are the entropy of the possible group (8.02
bits) and the information brought by the color pattern (4.42 bits). The last
term contain the 0.10 bit approximation:

w−[H− −H+ + log2w+/w−]

Now, the first two terms of the sum are the difference between the entropies
of the impossible and the possible subsets. If the probability distributions are
similar (the rarity of words is not related to the subset they belong to), then the
difference between entropies is roughly the difference between the logarithms
of the sizes of the subsets, i.e. the opposite of the last term of the sum. In
the simple case where words are equally probable, the first terms are exactly
log2w− and log2w+ so the whole sum equals zero. In the general case, the small
difference is multiplied by w−, making it yet smaller.

In conclusion, the entropy partitioning proposed in the video is not exact
when word weights vary but the error is small as long as the distribution of
word probabilities in the possible group are similar to that of the words that do
not match the color pattern.

4 Simulation
This is a toy example made with R.

4.1 Data
The function ent() returns the entropy of a distribution of probabilities.

# Shannon's entropy in bits
ent <- function(x) sum(x * log2(1/x))

We draw a set of 13000 words in a pareto distribution. A rank-abundance
curve shows the probabilities of words, by decreasing probability.

n_set_all <- 13000
# Random distribution
library("sads")
library("entropart")
p <- as.ProbaVector(rpareto(n_set_all, shape = 1.5))
autoplot(p, main = "Probabilities of the whole set of words") +

scale_x_log10()
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The possible word set contains 500 words.
n_plus <- 500
# Select the first n_plus words (they are not
# sorted) p_plus is the vector of their
# probabilities
p_plus <- p[1:n_plus]
autoplot(as.ProbaVector(p_plus), main = "Probabilities of possible words") +

scale_x_log10()
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# Impossible words
p_minus <- p[(n_plus + 1):n_set_all]
autoplot(as.ProbaVector(p_minus), main = "Probabilities of impossible words") +

scale_x_log10()
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4.2 Entropy partitionning

# Total entropy
gamma <- ent(p)
# Weights of groups
w_plus <- sum(p_plus)
w_minus <- sum(p_minus)
# Alpha entropy Probabilities in each group are
# global probabilities divided by the weight of
# the group
alpha <- w_plus * ent(p_plus/w_plus) + w_minus * ent(p_minus/w_minus)
# Beta entropy
beta <- ent(c(w_plus, w_minus))
# Check
gamma - alpha - beta # Should be 0

## [1] 1.387779e-16

The entropy of the whole dataset is 12.65 bits. That brought by the color
pattern is 4.62 bits. That of the possible word subset is 7.62 bits. The discrep-
ancy is thus 0.41 bits.

4.3 Approximation
The derivation of eq.(1) is detailed here, step by step. Each line of the code
contains the total entropy, starting from α plus β entropy as defined above.

# Rearrange alpha and beta by group
w_plus * (ent(p_plus/w_plus) + log2(1/w_plus)) +

w_minus * (ent(p_minus/w_minus) + log2(1/w_minus))

## [1] 12.65223

5



# Replace w_plus by 1-w_minus in the first term
(1-w_minus) * (ent(p_plus/w_plus) + log2(1/w_plus)) +

w_minus * (ent(p_minus/w_minus) + log2(1/w_minus))

## [1] 12.65223

# Isolate the information of the video and the error term
ent(p_plus/w_plus) +

log2(1/w_plus) +
w_minus * (ent(p_minus/w_minus) - ent(p_plus/w_plus) + log2(1/w_minus) - log2(1/w_plus))

## [1] 12.65223
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